
ETVision
Network Com

REAL-TIME NETWORK COMMUNICATION WITH EXTERNAL DEVICES

MANUAL VERSION 2.8

Sept 2024

techsupport@argusscience.com

Web site: www.argusscience.com

ETVISION NETWORK COMM MANUAL

 2

Table of Contents

1 Network communication with ETVision ... 3

2 ETVision Message Format ... 7

3 Streaming Data Buffer contents .. 17

4 Data Item Explanation .. 20

5 Sample Programs ... 25

5.1 ETNETLIB.DLL.. 25

5.2 C++ ... 25

5.3 C# .. 27

5.4 C++/MFC .. 29

5.5 PYTHON ... 29

6 Communication with Paradigm ... 31

7 Communication with E-Prime ... 32

8 Communication with MATLAB... 35

9 Communication using Lab Streaming Layer ... 37

ETVISION NETWORK COMM MANUAL

 3

1 Network communication with ETVision

Commands can be sent to the ETVision application from an external device via TCP/IP.

Streaming Data and/or video can be received from ETVision by the external device via

either TCP or UDP. Commands are used to send XDAT values to ETVision; to open,

close and name data files on ETVision; to start and stop recording to data files on

ETVision; and to initiate and stop streaming real-time data or video from ETVision to the

external device.

If a command channel is open the ETVision IP address and port number are displayed on

the ETVision “Network Configuration” dialog (System Control Table->“EyeData” tab-

>“Real-Time Input/Output” group->”Configuration” button).

A TCP “command socket” must be opened by the external device, and connected to

ETVision to enable command communication. When a command channel is opened,

command messages can be sent to ETVision by the external device, and in certain cases

ETVision will send messages to the external device on this channel. Streaming data or

video requires that a second TCP or UDP “data socket” be opened by the external device

and connected to ETVision.

Supported commands and received data and video message formats are described in

section 2, “ETVision Message Format”.

To send commands from an external device

On ETVision:

• Click the “Listen” button on System Control Table, “EyeData” tab.

On the External device:

• Create a TCP Socket which will be referred to as the “command socket”.

• connect the command socket with the ETVision IP address and port number.

• send one of the supported commands to the command socket.

To receive streaming UDP data or video from ETVision

On ETVision:

• “Send Data Result” and/or “Send Left Eye Video” or “Send Right Eye Video” or

“Send Scene Video” must be checked on the Network Configuration dialog. (Note

that only one video channel can be sent. If one of the video channels is selected

digital data is also sent).

On the External device:

• If a command channel is not already opened, create a TCP “command” socket and

connect it to the ETVision as previously described.

• Create a UDP socket for receiving data (“UDP data socket”), and a memory

buffer in which to copy data that comes to the UDP socket receive buffer.

ETVISION NETWORK COMM MANUAL

 4

• Send the CMD_START_SDATA_UDP (or CMD_START_SVIDEO) message to

the command socket.

• Data (or video) will begin streaming to the UDP data socket. Copy data from the

UDP receive buffer to a memory buffer for processing. See

“CMD_DATA_MSG(0x81)” and “CMD_DATA_JPG(0x82)” in section 2 for

data record format description.

• Use the CMD_STOP_SDATA_UDP (or CMD_STOP_SVIDEO_UDP) command

message to halt the data or video streaming.

To receive streaming TCP data or video from an ETVision data channel

On ETVision:

• “Send Data Result” and/or “Send Eye Video” or “Send Scene Video” must be

checked on the Network Configuration dialog.

On the External device:

• If a command channel is not already opened, create a TCP “command” socket and

connect it to the ETVision as previously described.

• Create a TCP socket for receiving data (“TCP data socket”) and a memory buffer

in which to copy data that comes to the TCP socket receive buffer.

• Send the CMD_SET_CONNECT_TYPE to the command socket with the proper

argument for “send data” or “send video”.

• Connect the TCP data socket with ETVision IP address and port number. Data (or

video) will begin streaming as soon as the connection is made. Copy data from

the TCP receive buffer to a memory buffer for processing. See

“CMD_DATA_MSG(0x81)” and “CMD_DATA_JPG(0x82)” in section 2 for

data record format description.

• Close the TCP data socket connection to halt data streaming.

To receive a single data item value from ETVision command channel

On the External device:

• If a command channel is not already opened, create a TCP “command socket” and

connect it to the ETVision as previously described.

• Send CMD_GET_DATA_ITEM with data ID set to desired item (list of IDs is

provided at the end of this section and again in section 2)

• Read the response on the command socket channel. Examine the response to first

confirm that it is a non-error response to the CMD_GET_DATA_ITEM

command, and then to get the data item value. The response format is specified in

section 2 along with all variable IDs, and the corresponding variable types.

Remember to close all sockets when through.

All commands start with a 4 byte Argus Signature, and all include a “byte order”

checksum. The Argus Signature is hex 20 41 47 53, which is the ASCII code for the

characters: <space>AGS. For the Argus Signature and all other messages elements

specified, the least significant byte is sent first; so the first byte sent will be hex53 (least

significant byte of the Argus Signature) followed by hex47, etc.

ETVISION NETWORK COMM MANUAL

 5

To compute the checksum sum all of the bytes in the message (other than the checksum

itself), ignore all but the least significant byte of the sum, and take the “twos

compliment” negative of that byte. If all bytes in the resulting message are summed

(including the checksum) the least significant byte of the sum should be zero.

For example, to set XDAT=100 (hex64) send the following 20 bytes in the order listed.

The values below are hex values.
Byte 0: 53

Byte 1: 47

Byte 2: 41

Byte 3: 20

Byte 4: 14
Byte 5: 00

Byte 6: 00

Byte 7: 00

Byte 8: 05

Byte 9: 00

Byte 10: 00

Byte 11: 00

Byte 12: 83

Byte 13: 00

Byte 14: 00

Byte 15: 00
Byte 16: 64

Byte 17: 00

Byte 18: 00

Byte 19: 00

Bytes 0-3 are the ArgusSignature; bytes 4-7 are the message size; bytes 8-11 are the

Set_XDAT command; bytes 12-15 are the checksum; and bytes 16-19 are the XDAT

value to be set. To calculate the check sum first sum bytes 0 through 11 and bytes 16

through 19 yielding dec381=hex17D. Consider only the least significant byte (hex7D).

Take the twos compliment negative of hex7D to get hex83.

To have an external device command the ETVision to record data, first use the

CMD_SET_DATAFILE_NAME command to specify a file name, then the

CMD_OPEN_DATAFILE to open a file with that name on the ETVision PC. Once a file

is opened, CMD_START_DATAFILE_RECORDING and

CMD_STOP_DATAFILE_RECORDING can be used to start and pause recording.

Close the file with CMD_CLOSE_DATAFILE. Note that external control can be mixed

with local ETVision control. For example, a data file can be opened manually on the

ETVision application, and an external device can then command recording to start and

stop, etc. A start recording command from an external device will have no affect if a file

is not opened, a stop recording command will have no affect if recording has not started,

and so forth.

The data message format, for real-time steaming data sent from ETVision, is described in

the “ETVision Message Format” section. See “CMD_DATA_MSG” and

“CMD_DATA_JPG” at end of section 2. The message item called “CheckState” is an 8

ETVISION NETWORK COMM MANUAL

 6

byte (64 bit) value specifying the contents of the data buffer. Each bit represents one of

the possible data items from the list of possible data items shown in a table in section 3.

If the bit is set, the corresponding data item is present. Included data items will be in the

data buffer in the same order that they appear in the table. The least significant bit of the

8 byte CheckState value (the least significant bit of byte 47 in the data message) is bit 0

and corresponds to the fist item listed in the table. Note that there are only 59 data items,

so bits 0-58 are used, and bits 59-63 of CheckState will always be 0. The list of data

items at the end of this section specifies the CheckState bit associated with each item.

The CheckState bit only indicates the presence or absence of a data item. The size of

each item, if present, is that listed in the table at the end of this section. Some integer

values have “scale factors”, which are also listed in the table. To create a floating point

value with the intended units of measure (inches or centimeters for distance values,

degrees for angle values, and pixels for pupil diameter) first convert the value to a float,

then multiply by the scale factor listed in the table. An explanation of each data item can

be found in section 4 of this document.

All data sent by ETVision uses the “little endian” convention (least significant byte of

each word is stored in smallest memory address).

Time stamp values on Data and Video messages represent hundreds of nanoseconds

(E.e., a time stamp value of one would represent 100 nanoseconds).

Sample C#, VC++, ETNetLib, and MFC programs, using the ETVision network

communication protocol, are provided as part of the ETRemote installation. After

installing ETRemote, these samples can be found in C:\Program Files\Argus Science

\ETRemote\ET_SDK_Samples.

ETVISION NETWORK COMM MANUAL

 7

2 ETVision Message Format

Byte 0: Argus Signature // ArgusSignature (0x20414753): “ AGS”, 4 bytes

Byte 4: MsgSize // Total message size, 4 bytes

Byte 8: Cmd // Message Command, 1 byte, other bytes reserved to 0

Byte 12: Checksum // Message Checksum, 1 byte, other bytes reserved to 0

Byte 16: Argument // Optional, depends on command type

// Command Type
#define CMD_START_DATAFILE_RECORDING 1

#define CMD_STOP_DATAFILE_RECORDING 2
#define CMD_OPEN_DATAFILE 3

#define CMD_CLOSE_DATAFILE 4

#define CMD_SET_XDAT 5

#define CMD_SET_DATAFILE_NAME 6

#define CMD_SET_CONNECT_TYPE 7

#define CMD_START_SDATA_UDP 8

#define CMD_STOP_SDATA_UDP 9

#define CMD_START_SVIDEO_UDP 10

#define CMD_STOP_SVIDEO_UDP 11

#define CMD_START_RVIDEO_UDP 12

#define CMD_STOP_RVIDEO_UDP 13
#define CMD_START_SVFILE_RECORDING 14

#define CMD_STOP_SVFILE_RECORDING 15

#define CMD_OPEN_SVFILE 16

#define CMD_CLOSE_SVFILE 17

// Special Command Type for EyeTracRemote
#define CMD_DISPLAY_TPS_FULLSCREEN 18
#define CMD_HIDE_TPS_FULLSCREEN 19

#define CMD_SET_TP_TOTALNUM 20

#define CMD_SHOW_TP 21

#define CMD_HIDE_TP 22

// Special Command Type with Response
#define CMD_GET_TP_TOTALNUM 23
#define CMD_GET_TP_POS 24

#define CMD_GET_DATAITEM 25

#define CMD_GET_AIOBJ_TOTALNUM 26

#define CMD_GET_AIOBJ_INFO 27

// Response bit for network command

#define CMD_RSP_BIT 0x80000000

#define CMD_RSP_ERR_BIT 0x40000000

// Data / Video Command Type Message
#define CMD_DATA_MSG 0x81

#define CMD_JPEG_MSG 0x82

ETVISION NETWORK COMM MANUAL

 8

// Normal Command Type 1 - 17

1. CMD_START_DATAFILE_RECORDING (1)

Byte 0: ArgusSignature (0x20414753) // ArgusSignature: “ AGS”

Byte 4: MsgSize (0x00000010) // Total message size: 16

Byte 8: Cmd (0x00000001) // Message Command: Start Recording Data

Byte 12: Checksum (0x000000ef) // Message Checksum: checksum byte

2. CMD_STOP_DATAFILE_RECORDING (2)

Byte 0: ArgusSignature (0x20414753) // ArgusSignature: “ AGS”

Byte 4: MsgSize (0x00000010) // Total message size: 16

Byte 8: Cmd (0x00000002) // Message Command: Stop Recording Data

Byte 12: Checksum (0x000000ee) // Message Checksum: checksum byte

3. CMD_OPEN_DATAFILE (3)

Byte 0: ArgusSignature (0x20414753) // ArgusSignature: “ AGS”

Byte 4: MsgSize (0x00000010) // Total message size: 16

Byte 8: Cmd (0x00000003) // Message Command: Open Data File

Byte 12: Checksum (0x000000ed) // Message Checksum: checksum byte

4. CMD_CLOSE_DATAFILE (4)

Byte 0: ArgusSignature (0x20414753) // ArgusSignature: “ AGS”

Byte 4: MsgSize (0x00000010) // Total message size: 16

Byte 8: Cmd (0x00000004) // Message Command: Close Data File

Byte 12: Checksum (0x000000ec) // Message Checksum: checksum byte

5. CMD_SET_XDAT (5)

Byte 0: ArgusSignature (0x20414753) // ArgusSignature: “ AGS”

Byte 4: MsgSize (0x00000014) // Total message size: 20

Byte 8: Cmd (0x00000005) // Message Command: Set XDAT

Byte 12: Checksum // Message Checksum: checksum byte

Byte 16: Argument (XDAT) // XData Value

6. CMD_SET_DATAFILE_NAME (6)

Byte 0: ArgusSignature (0x20414753) // ArgusSignature: “ AGS”

Byte 4: MsgSize // Total message size: 16 + Size of Data File Name

Byte 8: Cmd (0x00000006) // Message Command: Set XDAT

Byte 12: Checksum // Message Checksum: checksum byte

Byte 16: Argument (Char String) // Data File Name Char String

Note: If file name already exists on specified ETVision folder, ETVision will not

overwrite the previous file. Rather it will use the default file name instead.

7. CMD_SET_CONNECT_TYPE (7)

Byte 0: ArgusSignature (0x20414753) // ArgusSignature: “ AGS”

Byte 4: MsgSize (0x00000014) // Total message size: 20

Byte 8: Cmd (0x00000007) // Message Command: Set Connect Type

Byte 12: Checksum // Message Checksum: checksum byte

ETVISION NETWORK COMM MANUAL

 9

Byte 16: Argument // Connect Type
• #define SOCKET_TYPE_SDATA_TCP 3 // Send Data to Remote via TCP / IP

• #define SOCKET_TYPE_SVIDEO_TCP 7 // Send Video to Remote via TCP / IP

• #define SOCKET_TYPE_RVIDEO_TCP 9 // Receive Video from Remote via TCP / IP

8. CMD_START_SDATA_UDP (8)

Byte 0 ArgusSignature (0x20414753) // ArgusSignature: “ AGS”

Byte 4: MsgSize (0x00000014) // Total message size: 20

Byte 8: Cmd (0x00000008) // Message Command: Start Sending UDP Data

Byte 12: Checksum // Message Checksum: checksum byte

Byte 16: Argument (Port Number) // UDP Port Number

9. CMD_STOP_SDATA_UDP (9)

Byte 0: ArgusSignature (0x20414753) // ArgusSignature: “ AGS”

Byte 4: MsgSize (0x00000010) // Total message size: 16

Byte 8: Cmd (0x00000009) // Message Command: Stop Sending UDP Data

Byte 12: Checksum (0x000000e7) // Message Checksum: checksum byte

10. CMD_START_SVIDEO_UDP (10)

Byte 0: ArgusSignature (0x20414753) // ArgusSignature: “ AGS”

Byte 4: MsgSize (0x00000014) // Total message size: 20

Byte 8: Cmd (0x0000000a) // Message Command: Start Sending UDP Video

Byte 12: Checksum // Message Checksum: checksum byte

Byte 16: Argument (Port Number) // UDP Port Number

11. CMD_STOP_SVIDEO_UDP (11)

Byte 0: ArgusSignature (0x20414753) // ArgusSignature: “ AGS”

Byte 4: MsgSize (0x00000010) // Total message size: 16

Byte 8: Cmd (0x0000000b) // Message Command: Stop Sending UDP Video

Byte 12: Checksum (0x000000e5) // Message Checksum: checksum byte

12. CMD_START_RVIDEO_UDP (12)

Byte 0: ArgusSignature (0x20414753) // ArgusSignature: “ AGS”

Byte 4: MsgSize (0x00000014) // Total message size: 20

Byte 8: Cmd (0x0000000c) // Message Command: Start Receiving UDP Video

Byte 12: Checksum // Message Checksum: checksum byte

Byte 16: Argument (Port Number) // UDP Port Number

13. CMD_STOP_RVIDEO_UDP (13)

Byte 0: ArgusSignature (0x20414753) // ArgusSignature: “ AGS”

Byte 4: MsgSize (0x00000010) // Total message size: 16

Byte 8: Cmd (0x0000000d) // Message Command: Stop Receiving UDP Video

Byte 12: Checksum (0x000000e3) // Message Checksum: checksum byte

14. CMD_START_SVFILE_RECORDING (14)

Byte 0: ArgusSignature (0x20414753) // ArgusSignature: “ AGS”

Byte 4: MsgSize (0x00000010) // Total message size: 16

ETVISION NETWORK COMM MANUAL

 10

Byte 8: Cmd (0x0000000e) // Message Command: Start Recording Screen

Video

Byte 12: Checksum (0x000000e2) // Message Checksum: checksum byte

15. CMD_STOP_DATAFILE_RECORDING (15)

Byte 0: ArgusSignature (0x20414753) // ArgusSignature: “ AGS”

Byte 4: MsgSize (0x00000010) // Total message size: 16

Byte 8: Cmd (0x0000000f) // Message Command: Stop Recording Screen Video

Byte 12: Checksum (0x000000e1) // Message Checksum: checksum byte

16. CMD_OPEN_SVFILE (16)

Byte 0: ArgusSignature (0x20414753) // ArgusSignature: “ AGS”

Byte 4: MsgSize // Total message size: 16 + Size of Data File Name

Byte 8: Cmd (0x00000010) // Message Command: Open Screen Video File

Byte 12: Checksum // Message Checksum: checksum byte

Byte 16: Argument (Char String) // Screen Video File Name Char String

17. CMD_CLOSE_SVFILE (17)

Byte 0: ArgusSignature (0x20414753) // ArgusSignature: “ AGS”

Byte 4: MsgSize (0x00000010) // Total message size: 16

Byte 8: Cmd (0x00000011) // Message Command: Close Screen Video File

Byte 12: Checksum (0x000000df) // Message Checksum: checksum byte

// 18 – 22 are Special Commands for communication with EyeTracRemote (these are

commands sent by eyetracker to an open command socket and are not used by

ETVision)

18. CMD_DISPLAY_TPS_FULLSCREEN (18)

Byte 0 ArgusSignature (0x20414753) // ArgusSignature: “ AGS”

Byte 4: MsgSize (0x00000010) // Total message size: 16

Byte 8: Cmd (0x00000012) // Message Command: Display Target Points Full Screen

Byte 12: Checksum (0x000000de) // Message Checksum: checksum byte

19. CMD_HIDE_TPS_FULLSCREEN (19)

Byte 0: ArgusSignature (0x20414753) // ArgusSignature: “ AGS”

Byte 4: MsgSize (0x00000010) // Total message size: 16

Byte 8: Cmd (0x00000013) // Message Command: Hide Target Points Full Screen

Byte 12: Checksum (0x000000dd) // Message Checksum: checksum byte

20. CMD_SET_TP_TOTALNUM (20)

Byte 0: ArgusSignature (0x20414753) // ArgusSignature: “ AGS”

Byte 4: MsgSize // Total message size: 20

Byte 8: Cmd (0x00000014) // Message Command: Set total number of Target Points

Byte 12: Checksum // Message Checksum: checksum byte

Byte 16: Argument (Total Number) // Total number of Target Points, maximum

20

ETVISION NETWORK COMM MANUAL

 11

21. CMD_SHOW_TP (21)

Byte 0: ArgusSignature (0x20414753) // ArgusSignature: “ AGS”

Byte 4: MsgSize // Total message size: 28

Byte 8: Cmd (0x00000015) // Message Command: Display Target Point

Byte 12: Checksum // Message Checksum: checksum byte

Byte 16: TPIndex // Target Point Index, if TPIndex >= 20, show all points

Byte 20: TPH100 // Target Point Horizontal Coordinate x 100

Byte 24: TPV100 // Target Point Vertical Coordinate x 100

22. CMD_HIDE_TP (22)

Byte 0: ArgusSignature (0x20414753) // ArgusSignature: “ AGS”

Byte 4: MsgSize // Total message size: 28

Byte 8: Cmd (0x00000016) // Message Command: Hide Target Point

Byte 12: Checksum // Message Checksum: checksum byte

Byte 16: TPIndex // Target Point Index, if TPIndex >= 20, hide all points

Byte 20: Reserved

Byte 24: Reserved

// 23 – 25 are Special Command Type with Response (23 & 24 are not applicable to

ETVision)

23. CMD_GET_TP_TOTALNUM (23)

Byte 0: ArgusSignature (0x20414753) // ArgusSignature: “ AGS”

Byte 4: MsgSize // Total message size: 16

Byte 8: Cmd (0x00000017) // Message Command: Get Total Target Points Number

Byte 12: Checksum // Message Checksum: checksum byte

// Response

Byte 0: ArgusSignature (0x20414753) // ArgusSignature: “ AGS”

Byte 4: MsgSize // Total message size: 20

Byte 8: Response Cmd // Response Command:

 // No Error: CMD_RSP_BIT | MD_GET_TP_TOTALNUM

 // Error: CMD_RSP_BIT | CMD_RSP_ERR_BIT |CMD_GET_TP_TOTALNUM

Byte 12: Checksum // Message Checksum: checksum byte

Byte 16: TotalNum // Total Target Points Number

24. CMD_GET_TP_POS (24)

Byte 0: ArgusSignature (0x20414753) // ArgusSignature: “ AGS”

Byte 4: MsgSize // Total message size: 20

Byte 8: Cmd (0x00000018) // Message Command: Get Target Point Position

Byte 12: Checksum // Message Checksum: checksum byte

Byte 16: TPIndex // Target Point Index

// Response

Byte 0: ArgusSignature (0x20414753) // ArgusSignature: “ AGS”

ETVISION NETWORK COMM MANUAL

 12

Byte 4: MsgSize // Total message size: 28

Byte 8: Response Cmd // Response Command:

 // No Error: CMD_RSP_BIT | CMD_GET_TP_POS

 // Error: CMD_RSP_BIT | CMD_RSP_ERR_BIT | CMD_GET_TP_POS

Byte 12: Checksum // Message Checksum: checksum byte

Byte 16: TPIndex // Target Point Index

Byte 20: TPH100 // Target Point Horizontal Coordinate x 100

Byte 24: TPV100 // Target Point Vertical Coordinate x 100

25. CMD_GET_DATA_ITEM (25)

Byte 0: ArgusSignature (0x20414753) // ArgusSignature: “ AGS”

Byte 4: MsgSize // Total message size: 20

Byte 8: Cmd (0x00000019) // Message Command: Get Eye Data Item Value

Byte 12: Checksum // Message Checksum: checksum byte

Byte 16: DataID // Data Item ID

// Response

Byte 0: ArgusSignature (0x20414753) // ArgusSignature: “ AGS”

Byte 4: MsgSize // Total message size: 48 *

* in case of “DATAID_ AI_OBJECTS” data item ID, response message size is variable

Byte 8: Response Cmd // Response Command:

 // No Error: CMD_RSP_BIT | CMD_GET_DATAITEM

 // Error: CMD_RSP_BIT | CMD_RSP_ERR_BIT | CMD_GET_DATAITEM

Byte 12: Checksum // Message Checksum: checksum byte

Byte 16: FrameNo // Current Frame Number

Byte 20: Reserved // Reserved bytes

Byte 24: TimeStamp // Time Stamp of this frame

Byte 32: UpdateRate // Frame Update Rate

Byte 36: DataID // Data Item ID

Byte 40: DataVal // Data Item Value

Byte 44: DataVal // 2nd value (for items with “2 Floating Point values)

// Data File Items defination (Note: items with “2 floating point values” are for left and right eye)

#define DATAID_START_OF_RECORD 0 // DataVal: Unsigned Integer Type

#define DATAID_STATUS 1 // DataVal: Unsigned Integer Type

#define DATAID_OVERTIME_COUNT 2 // DataVal: Unsigned Integer Type

#define DATAID_MARK_VALUE 3 // DataVal: Unsigned Integer Type

#define DATAID_XDAT 4 // DataVal: Unsigned Integer Type

#define DATAID_CU_VIDEO_FIELD_NUM 5 // DataVal: Unsigned Integer Type

#define DATAID_PUPIL_POS_HORZ 6 // DataVal: 2 Floating Point values

#define DATAID_PUPIL_POS_VERT 7 // DataVal: 2 Floating Point values

#define DATAID_PUPIL_DIAM 8 // DataVal: 2 Floating Point values

#define DATAID_PUPIL_HEIGHT 9 // DataVal: 2 Floating Point values

#define DATAID_CR_POS_HORZ 10 // DataVal: 2 Floating Point values

#define DATAID_CR_POS_VERT 11 // DataVal: 2 Floating Point values

ETVISION NETWORK COMM MANUAL

 13

#define DATAID_CR_DIAM 12 // DataVal: 2 Floating Point values

#define DATAID_CR2_POS_HORZ 13 // DataVal: 2 Floating Point values

#define DATAID_CR2_POS_VERT 14 // DataVal: 2 Floating Point values

#define DATAID_CR2_DIAM 15 // DataVal: 2 Floating Point values

#define DATAID_HORZ_GAZE_COORD 16 // DataVal: Floating Point Type

#define DATAID_VERT_GAZE_COORD 17 // DataVal: Floating Point Type

#define DATAID_HORZ_GAZE_OFFSET 18 // DataVal: Floating Point Type

#define DATAID_VERT_GAZE_OFFSET 19 // DataVal: Floating Point Type

#define DATAID_VERGENCE_ANGLE 20 //Data Val: Floating Point Type

#define DATAID_VERG_GAZE_COORD_X 21 //Data Val: Floating Point Type

#define DATAID_VERG_GAZE_COORD_Y 22 //Data Val: Floating Point Type

#define DATAID_VERG_GAZE_COORD_Z 23 //Data Val: Floating Point Type

#define DATAID_HDTRK_X 24 // DataVal: Floating Point Type

#define DATAID_HDTRK_Y 25 // DataVal: Floating Point Type

#define DATAID_HDTRK_Z 26 // DataVal: Floating Point Type

#define DATAID_HDTRK_AZ 27 // DataVal: Floating Point Type

#define DATAID_HDTRK_EL 28 // DataVal: Floating Point Type

#define DATAID_HDTRK_RL 29 // DataVal: Floating Point Type

#define DATAID_ET3S_SCENE_NUMBER 30 // DataVal: Integer Type

#define DATAID_ ET3S _GAZE_LENGTH 31 // DataVal: Floating Point Type

#define DATAID_ ET3S _HORZ_GAZE_COORD 32 // DataVal: Floating Point Type

#define DATAID_ ET3S _VERT_GAZE_COORD 33 // DataVal: Floating Point Type

#define DATAID_SSC_HORZ_GAZE_COORD 34 // DataVal: Floating Point Type

#define DATAID_SSC_VERT_GAZE_COORD 35 // DataVal: Floating Point Type

#define DATAID_ EYE_LOCATION_X 36 // DataVal: 2 Floating Point values

#define DATAID_ EYE_LOCATION_Y 37 // DataVal: 2 Floating Point values

#define DATAID_ EYE_LOCATION_Z 38 // DataVal: 2 Floating Point values

#define DATAID_ GAZE_DIR_X 39 // DataVal: 2 Floating Point values
#define DATAID_ GAZE_DIR_Y 40 // DataVal: 2 Floating Point values

#define DATAID_ GAZE_DIR_Z 41 // DataVal: 2 Floating Point values

#define DATAID_AUX_SENSOR_X 42 // DataVal: Floating Point Type

#define DATAID_AUX_SENSOR_Y 43 // DataVal: Floating Point Type

#define DATAID_AUX_SENSOR_Z 44 // DataVal: Floating Point Type

#define DATAID_AUX_SENSOR_AZ 45 // DataVal: Floating Point Type

#define DATAID_AUX_SENSOR_EL 46 // DataVal: Floating Point Type

#define DATAID_AUX_SENSOR_RL 47 // DataVal: Floating Point Type

#define DATAID_EYELID_UPPER_VERT 48 //DataVal: 2 Floating Point values

#define DATAID_EYELID_LOWER_VERT 49 //DataVal: 2 Floating Point values

#define DATAID_BLINK_CONFIDENCE 50 //DataVal: 2 Floating Point values

#define DATAID_ELLIPSE_ANGLE 51 //DataVal: 2 Floating Point values

ETVISION NETWORK COMM MANUAL

 14

#define DATAID_GAZE_LAOI 52 //DataVal: Unsigned Integer Type

#define DATAID_LAOI_GAZE_HORZ_COORD 53 //DataVal: Floating Point Type

#define DATAID_LAOI_GAZE_VERT_COORD 54 //DataVal: Floating Point Type

#define DATAID_FIX_DURATION 55 //DataVal: Floating Point Type
#define DATAID_HORZ_FIX_COORD 56 //DataVal: Floating Point Type

#define DATAID_VERT_FIX_COORD 57 //DataVal: Floating Point Type

#define DATAID_GAZE_AI_OBJECT_ID 58 // DataVal: Unsigned Integer Type

#define DATAID_ AI_OBJECTS 59 //Variable length set of Data values

 //as described below:

 //no_of_AI_objects DataVal: Unsigned Integer Type

 //Next set of 7 items repeats for no_of_AI_objects

 //obj_ID DataVal: Unsigned Integer Type

 //obj_horz_cntr DataVal: Floating Point Type

 //obj_vert_cntr DataVal: Floating Point Type

 //obj_width DataVal: Floating Point Type

 //obj_height DataVal: Floating Point Type
 //obj_gaze_horz DataVal: Floating Point Type

 //obj_gaze_vert DataVal: Floating Point Type

26. CMD_GET_AIOBJ_TOTALNUM (26)
//Total number of objects in the Argus AI model being used

// Note that this is the numbe of objects defined by the AI model, not the number currently

//being detected.
Byte 0: ArgusSignature (0x20414753) // ArgusSignature: “ AGS”

Byte 4: MsgSize // Total message size: 16

Byte 8: Cmd (0x0000001A) // Message Command: Get AIObject Total Number

Byte 12: Checksum // Message Checksum: checksum byte

// Response

Byte 0: ArgusSignature (0x20414753) // ArgusSignature: “ AGS”

Byte 4: MsgSize // Total message size: 20

Byte 8: Response Cmd // Response Command:

 // No Error: CMD_RSP_BIT | MD_GET_DATAITEM

 // Error: CMD_RSP_BIT | CMD_RSP_ERR_BIT | CMD_ AIOBJ_TOTALNUM

Byte 12: Checksum // Message Checksum: checksum byte

Byte 16: Number of AI Objects // Unsigned Integer

27. CMD_GET_AIOBJ_INFO (27)
//Status, color, and name of specified object in Argus AI model being used

//Note that this is information about the object ID definition in the AI model, not

//information about an object currently being detected.
Byte 0: ArgusSignature (0x20414753) // ArgusSignature: “ AGS”

Byte 4: MsgSize // Total message size: 20

Byte 8: Cmd (0x0000001B) // Message Command: Get Eye Data Item Value

Byte 12: Checksum // Message Checksum: checksum byte

Byte 16: AIObjectID // AI Object Item ID (UINT)

// Response

Byte 0: ArgusSignature (0x20414753) // ArgusSignature: “ AGS”

Byte 4: MsgSize // Total msg size: 28 + Obj name length + 1

ETVISION NETWORK COMM MANUAL

 15

Byte 8: Response Cmd // Response Command:

 // No Error: CMD_RSP_BIT | MD_GET_DATAITEM

 // Error: CMD_RSP_BIT | CMD_RSP_ERR_BIT | CMD_ GET_AIOBJ_INFO

Byte 12: Checksum // Message Checksum: checksum byte

Byte 16: AIObjectID // AI Object Item ID (UINT)

Byte 20: AI Object Status // Status: 0-disabled, 1-enabled (UINT)

Byte 24: AI Object Color // XRGB color (UINT)

Byte 28: AI Object Name // 1 byte for each character in Object Name

 + “0” as the last character

//format of streaming data records sent by ETVison

Data Message Format: CMD_DATA_MSG(0x81)

Byte 0: ArgusSignature (0x20414753) // ArgusSignature: “ AGS”

Byte 4: MsgSize // Total message size: 56 + DataSize

Byte 8: Cmd (0x00000081) // Message Command: Data Message

Byte 12: Checksum (0x00000000) // Message Checksum: Reserved to 0 for Data Message

Byte 16: DataSize // Selected Data Size

Byte 20: FrameSize(0x00000000) // Video Frame Size: 0 since no video

Byte 24: FrameNo // Current Frame Number

Byte 28: Reserved // reserved bytes

Byte 32: TimeStamp // Time Stamp of this frame

Byte 40: UpdateRate // Frame Update Rate

Byte 44: Reserved // reserved bytes

Byte 48: CheckState // Data Selected State

Byte 56: BufStart // Data Buffer

//format of streaming video records sent by ETVison

// Note: ETVision does not include digital data with streaming Video frame records;

// therefore “DataSize”, specified in Bytes 16-19, will always be zero.

Video Message Format: CMD_JPEG_MSG(0x82)

Byte 0: ArgusSignature (0x20414753) // ArgusSignature: “ AGS”

Byte 4: MsgSize // Total message size: 56 + DataSize + FrameSize

Byte 8: Cmd (0x00000082) // Message Command: JPEG Message

Byte 12: Checksum (0x00000000) // Message Checksum: Reserved to 0 for JPEG Message

Byte 16: DataSize // Selected Data Size

Byte 20: FrameSize // Video Frame Size (Encoded JPEG Image)

Byte 24: FrameNo // Current Frame Number

Byte 28: Reserved // reserved bytes

Byte 32: TimeStamp // Time Stamp of this frame

Byte 40: UpdateRate // Frame Update Rate

Byte 44: Reserved // reserved bytes

Byte 48: CheckState // Data Selected State

Byte 56: BufStart // Data Buffer

Byte 56 + DataSize: Buffer // Video Buffer

ETVISION NETWORK COMM MANUAL

 16

ETVISION NETWORK COMM MANUAL

 17

3 Streaming Data Buffer contents

The “Data Buffer”, starting at Byte 56 in the streaming data message format, contains a

subset of the items listed in table, below, as determined by the CheckState value. Note

that some ID bits indicate inclusion of the data item in the current row and also the data

item in one or more subsequent rows. In the “Units” column, “eye camera”is abbreviated

as “ec”, and “scene camera” as “sc”. The “Units” column is marked N/A for items that

have no dimension unit. See section 4 for an explanation of each item.

CheckState

bit

Data item Type Size

(bytes)

Scale factor

0 start_of_record Byte 1 1

1 status Byte 1 1

2 overtime_count Uint16 2 1

3 mark_value Byte 1 1

4 XDAT UInt16 2 1

5 CU_video_field_num UInt16 2 1

6 left_pupil_pos_horz UInt16 2 1

 right_pupil_pos_horz UInt16 2 1

7 left_pupil_pos_vert UInt16 2 1

 right_pupil_pos_vert UInt16 2 1

8 left_pupil_diam UInt16 2 0.01

 right_pupil_diam UInt16 2 0.01

9 left_pupil_height UInt16 2 0.01

 right_pupil_height UInt16 2 0.01

10 left_cr_pos_horz UInt16 2 1

 right_cr_pos_horz UInt16 2 1

11 left_cr_pos_vert UInt16 2 1

 right_cr_pos_vert UInt16 2 1

12 left_cr_diam UInt16 2 1

 right_cr_diam UInt16 2 1

13 left_cr2_pos_horz UInt16 2 1

 right_cr2_pos_horz UInt16 2 1

14 left_cr2_pos_vert UInt16 2 1

 right_cr2_pos_vert UInt16 2 1

15 left_cr2_diam UInt16 2 1

 right_cr2_diam UInt16 2 1

16 horz_gaze_coord Int16 2 0.1

17 vert_gaze_coord Int16 2 0.1

18 horz_gaze_offset Int16 2 1

19 vert_gaze_offset Int16 2 1

20 vergence_angle Single 4 1

21 verg_gaze_coord_x Single 4 1

ETVISION NETWORK COMM MANUAL

 18

22 verg_gaze_coord_y Single 4 1

23 verg_gaze_coord_z Single 4 1

24 hdtrk_X Int16 2 0.01

25 hdtrk_Y Int16 2 0.01

26 hdtrk_Z Int16 2 0.01

27 hdtrk_az Int16 2 0.01

28 hdrtk_el Int16 2 0.01

29 hdtrk_rl Int16 2 0.01

30 ET3S_scene_number Byte 1 1

31 ET3S _gaze_length Single 4 1

32 ET3S _horz_gaze_coord Single 4 1

33 ET3S _vert_gaze_coord Single 4 1

34 SSC_horz_gaze_coord Single 4 1

35 SSC_vert_gaze_coord Single 4 1

36 left_eyelocation_X Int16 2 0.01

 right_eyelocation_X

37 left_eyelocation_Y Int16 2 0.01

 right_eyelocation_Y

38 left_eyelocation_Z Int16 2 0.01

 right_eyelocation_Z

39 left_gaze_dir_X Int16 2 0.001

 right_gaze_dir_X

40 left_gaze_dir_Y Int16 2 0.001

 right_gaze_dir_Y

41 left_gaze_dir_Z Int16 2 0.001

 right_gaze_dir_Z

42 aux_sensor_X Int16 2 0.01

43 aux_sensor_Y Int16 2 0.01

44 aux_sensor_Z Int16 2 0.01

45 aux_sensor_az Int16 2 0.01

46 aux_sensor_el Int16 2 0.01

47 aux_sensor_rl Int16 2 0.01

48 left_eyelid_upper_vert Uint16 2 1

 right_eyelid_upper_vert Uint16 2 1

49 left_eyelid_lower_vert Uint16 2 1

 right_eyelid_lower_vert Uint16 2 1

50 left_blink_confidence Uint16 2 1

 right_blink_confidence Uint16 2 1

51 left_ellipse_angle single 4 1

 right_ellipse_angle single 4 1

52 Gaze_LAOI Uint32 4 1

53 LAOI_horz_gaze_coord single 4 1

54 LAOI_vert_gaze_coord single 4 1

55 fix_duration single 4 1

56 horz_fix_coord single 4 1

ETVISION NETWORK COMM MANUAL

 19

57 vert_fix_coord single 4 1

58 Gaze_AI_Obj_ID Uint32 4 1

59 AI_Objects

 no_of_AI_objects Uint32 4 1

 Set comprised of next 7 items is repeated for no_of_AI_objects.

 obj_ID Uint32 4 1

 obj_horz_cntr Single 4 1

 obj_ vert_cntr Single 4 1

 obj_width Single 4 1

 obj_height Single 4 1

 obj_gaze_ horz Single 4 1

 obj_gaze_ vert Single 4 1

ETVISION NETWORK COMM MANUAL

 20

4 Data Item Explanation

Start of record byte – fixed value 0xFA

Status byte – contains eye tracer status information.

Bit Meaning (if 1)

0

(least significant)

Head tracker enabled, monocular system or left eye binocular

1 Head tracker enabled, right eye (binocular system only)

2 Cornea Reflection found, right eye (binocular system only)

3 Pupil Found, right eye (binocular system only)

4 Cornea Reflection found, monocular system or left eye binocular

5 Pupil Found, monocular system or left eye binocular

6 Right eye data was simulated for left/right eye data synchronization

(binocular only)

7 Left eye data was simulated for left/right eye data synchronization

(binocular only)

overtime count, 2 bytes, unsigned integer. Shows how many records were lost prior to this

one. Typically contains the value zero.

Mark value byte – will be last integer “Mark” value entered by user.

XDAT – 16 bit integer set by external device.

CU video field number – Internal field (or record) number kept by system. It is the number

of vertical sync pulses received from the eye camera since the ETVision program was

activated, and rolls over to 0 after every 65535 fields. Useful mostly for debugging purposes.

pupil_pos – coordinates proportional to horizontal (0 to 640) and vertical (0 to 480) pupil

position with respect to the eye camera field of view.

Pupil_diam – value proportional to diameter of the pupil image on the eye camera. More

specifically, the value is major axis of the ellipse shape identified as the pupil image. Note

that this value is computed to a fraction of a pixel. Note also that this value will not be

affected by degree of image ellipticity, and will not change (except for measurement noise) if

the diameter of the actual pupil does not change and camera to eye distance does not change.

This pixel value is the value displayed on the ETVision Interface (on the Data Display

Screen), and the value shown by the Argus Science data analysis program, ETAnalysis.

Pupil_height – the minor axis of the ellipse shape identified as the pupil image. Scaling is

the same as that described above for pupil_diam. Note that unlike pupil diam (major ellipse

axis) the minor axis of the ellipse image shape will change length as degree of ellipticity

changes due to eye movement, even if true pupil diameter remains constant.

ellipse_angle – the angle of the major axes of the pupil ellipse (ellipse shape identified as the

pupil image) with respect to the eye camera horizontal axis. Reported values range from +

ETVISION NETWORK COMM MANUAL

 21

90 degrees to – 89.99 degrees. (Note that +90 and –90 degrees defines the same ellipse

orientation).

cr_pos -- coordinates proportional to horizontal (0 to 640) and vertical ()0 to 480) corneal

reflection with respect to the eye camera field of view.

cr_diam – Diameter of the corneal reflection image in eye camera pixels.

gaze_coord – horizontal and vertical coordinates of computed point of gaze with respect to

the head mounted scene camera 1280 x 720 pixel field of view (fov). Note that fractional

pixel positions are represented. Also note that the values are signed. Negative values

represent positions to the left, or above the scene camera fov, while values greater than 640

or 480 represent positions to the right of, or below the camera fov.

gaze_offset – Manual offset added to horizontal or vertical gaze coordinate in scene camera

pixel units.

vergence angle – The angle, in degrees, between the left and right eye lines of gaze.

verg_gaze_coord – When ET3Space is not enabled, these are the X, Y, and Z coordinates

for the computed point of gaze expressed in the scene camera coordinate frame. The scene

camera coordinate frame has its origin at the scene camera lens aperture; with an x axis

pointing along the camera optical axis; a y axis pointing to the subject’s right, parallel to the

horizontal camera pixel rows; and a z axis pointing down, parallel to the camera pixel

columns. The coordinate values correspond to real distance values with units of either inches

or centimeters depending on the "Position Units" selected on the System Control Table,

System Configuration tab. When ET3Space is enabled, these are the X, Y, and Z coordinates

specifying a unit vector (vector with a total length of 1) in the direction of gaze and expressed

in the ET3Space global coordinate system. In other words, a line from the scene camera to

the point of gaze should have the direction defined by this unit vector.

hdtrk – X, Y, Z position values and azimuth, elevation, and roll orientation values received

by the ETVision system from a head tracker. Position values are in units of inches or

centimeters (depending on which unit system was set in ETVision configuration dialog).

Angles are in degrees.

ET3S_scene_number – number of scene plane first intersected by line of gaze, as computed

by the ETVision, ET3Space feature. . If gaze is not detected to be within the boundaries of

any defined scene plane, ET3S_scene_number is “-1”.

ET3S_gaze_length – Distance from the eye to the point of gaze on the scene plane

designated by ET3S_scene_number, as computed by the ETVision, ET3Space feature. The

value is recorded or transmitted as a single precision floating point value with units of either

inches or centimeters (depending on which unit system was set in ETVision configuration

dialog).

ET3S_gaze_coord – The point of gaze in scene plane coordinates, on the scene plane

designated by EH_scene_number, as computed by the ETVision, ET3Space feature.

ETVISION NETWORK COMM MANUAL

 22

Coordinates are with respect to the coordinate frame defined on the scene plane by the

ET3Space environment specifications. The “horizontal” value is the Y scene plane

coordinate, and the “vertical” value is the Z coordinate. The value is recorded or transmitted

as a single precision floating point value with units of either inches or centimeters (depending

on which unit system was set in ETVision configuration dialog). If ET3S_scene_number is

“-1” (gaze not within any defined scene plane boundary), then the reported coordinates are

gaze intersection with an infinite extension of scene plane 0.

SSC_gaze_coord – The horizontal and vertical pixel coordinate of point-of-gaze on the

“Stationary Scene Camera” image. These values are meaningful only if the Stationary Scene

Camera feature has been enabled and set up as described in the ET3Space manual.

eye_location – The location in space, with respect to the ET3Space “global coordinate

system, of the subject’s eye. This location is computed, by the ET3Space feature, based on

data received from the head tracker, and knowledge of the location of the eye with respect to

the head tracker sensor. It does not depend on eye pointing direction. The units are inches or

centimeters.

gaze_dir – A 3 dimensional unit vector (vector with a total length of 1) in the direction of

gaze, represented with respect to the ET3Space “global coordinate system”. These are

dimensionless quantities that specify a direction and have no units.

aux_sensor – Not available with most head trackers. Consult Argus Science.

eyelid_lower_vert – best estimate of the vertical position of the lower eyelid boundary,

directly below the pupil center. The position is reported with respect to the eye camera field

of view, in camera pixel units. The range is from 1 at the top of the camera field of view to

239 at the bottom. A value of 0 means that no position was detected. If the bottom boundary

of the iris is exposed, the system may sometimes report the position of the bottom of the iris

instead of the lower eyelid. In these cases the lower eyelid and iris bottom are usually very

close to each other.

eyelid_upper vert – best estimate of the vertical position of the upper eyelid boundary,

directly above the pupil center. The position is reported with respect to the eye camera field

of view, in camera pixel units. The range is from 1 at the top of the camera field of view to

239 at the bottom. A value of 0 means that no position was detected. If the top boundary of

the iris is exposed, the system may sometimes report the position of the top of the iris instead

of the upper eyelid. In these cases the upper eye lid and iris top are usually very close to each

other.

blink_confidence – Estimated probability that an eye blink is in process. The range is 0 –

100. 0 indicates that either the system is very sure that the eyelids are opened and the pupil is

exposed, or the pupil is undetected for some reason other than a blink. Higher values indicate

increasing probability that a blink is in progress. Note that if the pupil remains undetected

for a time that is much longer than a typical blink, the blink confidence will change to a low

value, indicating that something other than a blink must be preventing pupil recognition.

Gaze_LAOI -- 32-bit integer specifying which currently defined Live Areas of Interest (LAOIs),

if any, contain the current point of gaze. If no LAOIs are defined this value will always be zero.

ETVISION NETWORK COMM MANUAL

 23

Currently defined LAOIs are always numbered in the order that they appear on the “List” drop
down menu, on the LAOI Configuration dialog. The first LAOI at the top of the list is 0, and next

is 1, the next is 2, and so on. Each data record includes an integer value with each bit

corresponding to one of the currently defined LAOIs. Bit 0 (the least significant bit) corresponds

to LAOI 0, bit 1 corresponds to LAOI 1, etc. If gaze is not detected to be within an LAOI, the
corresponding bit will be 0 on that data record. If gaze is detected to be within an LAOI, the

corresponding bit will be 1. Note that if Live Areas of Interest overlap, gaze can simultaneously

be in more than one, and in this case bits corresponding to all LAOIs containing the point of gaze
will be set.

LAOI_gaze_coordinate – single precision floating point values cooresponding to horizontal and
vertical gaze coordinates with respect to a “Live Area of Interest” (LAOI) coordinate system

defined by the user. These coordinates are reported only when gaze is detected to be within the

LAOI boundary. If gaze is not within the boundary of an LAOI or is in an LAOI with no defined

coordinate system, the values will be “0.0”. If gaze is within multiple overlapping LAOIs, LAOI
gaze coordinates are reported for the lowest numbered LAOI for which a coordinate system has

been defined.

fix_duration – single precision floating point value representing the current duration, in seconds (to the

nearest 0.001 sec), of an on-going fixation, as determined by the real-time fixation detection algorithm

(see ETVision manual, Appendix L). If there is not an “on-going” fixation, the value is 0.0.

fix_coord -- single precision floating point value representing the horizontal and vertical coordinates

of an "on-going” fixation with respect to the head mounted scene camera 1280 x 720 pixel field-of-

view (fov), as determined by the real-time fixation detection algorithm (see ETVision manual,

Appendix L). If there is not an “on-going” fixation, the values are 0.0.

Gaze_AI_ID – 32 bit Integer value specifying the type of AI object detection bounding box that

contains the point-of-gaze cursor. The integer value is the index number of an object in the AI object

detection model being used by ETVision. If gaze is not within any AI object bounding box, Gaze_AI is

0. If “AI Auto Object Detection” is not enabled, Gaze_AI is always 0. Note that if AI object bounding
boxes overlap gaze can be inside more than one. In this case the system determines which bounding

box center is closest to the gaze point and Gaze_AI reports the index for that object type.

AI_objects – This item is an entire set of values. The number of data values in the set varies

depending on the number of AI objects that were recognized.

• no_of_AI_objects (32 bit integer) is always the first value in the set

and is an integer specifying the number of AI objects that were

recognized.

If no_of_AI_objects is greater than 0, it is always followed by a set of 7 values

for each recognized object. The following set of 7 values is repeated for each

recognized AI object.

• AI_obj_ID (32 bit integer)

• obj_horz_cntr (single precision floating point)

• obj_vert_cntr (single precision floating point)

• obj_width (single precision floating point)

• obj_height (single precision floating point)

ETVISION NETWORK COMM MANUAL

 24

• obj_gaze_horz (single precision floating point)

• obj_gaze_vert (single precision floating point)

AI_obj_ID is an integer identifying the object name according to the list of

names in the AI model “….AINames.txt” file. obj_horz_cntr and

obj_vert_cntr are floating point pixel values specifying the position of the

horizontal and vertical center of the AI object bounding box with respect to the

scene camera field of view. obj_width and obj_height are floating point values

specifying the width and height of the object bounding box in scene camera

pixel units. obj_gaze_horz and obj_gaze_vert are floating point values

specifying the point-of-gaze position with respect to the bounding box edges

as a fraction of the width and height. These values range from 0.0 to 1.0.

“0.0” represents horizontal positions at the left of the bounding box and

vertical positions at the top. “1.0” represents positions at the right and at the

bottom. If gaze position was not within the AI object obj_gaze_horz and

obj_gaze_vert are both set to “-1.0”.

ETVISION NETWORK COMM MANUAL

 25

5 Sample Programs

Sample programs are provided to demonstrate communication with ETVision from C++, C#,

or Python applications. The examples include source code where appropriate. One set of

C++ samples, and the Python examples demonstrate very basic communicate with ETVision,

using just the Command Prompt window rather than a Graphic User Interface (GUI). C# and

C++/MFC samples demonstrate slightly more sophisticated communication and include a

GUI, and use a multi-threading library provided by Argus.

A “.Net” Com library, called ETNetLib.dll, is provided and the C# and C++/MFC samples

use this library to implement communication. ETNetLib uses multi-threading, and the users

application must support multi-threading if the library is used. All samples are normally

installed as part of the ETRemote installation. On Win 10 PCs they are found from the Start

symbol in Start->Argus Science->ET SDK Samples, or from Windows explorer in Program

Files (86)\Argus Science \ETRemote\ET_SDK_Samples.

5.1 ETNetLib.DLL
ETNetLib is a COM library that provides an interface to ETVision. It can be used to send

commands to ETVision and to receive streaming data or video using a separate ETVision data

socket channel. It uses multi-threading and an application must support multi-threading to use

the library.

For example, use “ConnectET” to open both an ETVision command and data socket. The

library will initiate and maintain a thread to receive and buffer streaming data from ETVision.

Use “GetConnectStatus” to ensure that valid connections are open. Use “GetDataItemValue”

to get the latest available sample of any data value being streamed from ETVision. The value

returned will be properly scaled and returned as the appropriate data type (unsigned integer,

integer, or double). Use “SendETCmd” to send commands to ETVision via the command

channel.

See the sample C# and C++/MFC programs for detailed examples. Both the compiled

ETNetLib.dll and the source code, with a complete Microsoft Visual Studio project, are

provided.

5.2 C++
The C++ examples are executed by typing commands on the “Command Prompt” window

(Win 10: Start->All programs->Windows System->Command Prompt). Results also display

on the Command Prompt window. Source code and Visual Studio project files are included

for all samples. Be sure that the external PC and ETVision PC are connected to the same

LAN. In all cases, if a command socket connection with ETVision is not already open, be sure

to click “Listen” on the ETVision Network configuration dialog before running the sample

program. All sample programs include a “readme” text file with instructions. The following

sample programs are included. Note that these C++ samples do not use either the MFC

library or the ETNetLIb COM Object library

ETVISION NETWORK COMM MANUAL

 26

• ETGetAIObjInfo

Demonstrate getting the status, color, and name of all AI objects in currently loaded

AI model

Send command to get number of AI objects in currently loaded model (see section 2,

command 26), receive response, and display value on Command Prompt window. For

each AI object, send command to get AI object information (see section 2, command

27), receive response, and display object ID, Object Name, XRGB code for the Object

color, and object status (“Enabled” or “Disabled”) on Command Prompt window.

Command: ETGetAIObjInfo IPAddress IPPort

where IPAddress and IPPort are the address and port number shown on the ETVision

Network configuration dialog

• ETGetDataItemValue

Demonstrate receiving ETVision data values on the command channel

Demonstration of receiving single ETVision data values on the command channel. Be

sure that “Send Data Result” is checked on the ETVision Network Configuration

dialog. The command socket connection to ETVision is used to return a single item

value. The ETVision IP address and port number as well as the desired data item are

specified as command line arguments.

Command: ETGetDataItemValue IPAddress IPPort DataID

where IPAddress and IPPort are the address and port number shown on the ETVision

Network configuration dialog, and DataID is the ID number of the desired data item

(see section 2, command 25).

• ETReceiveData

Demonstrate receiving streaming data from ETVision on a data channel

Be sure that “Send Data Result” is checked on the ETVision Network Configuration

dialog. Both a command and a data socket connection to ETVision are opened, and

the data socket is used to receive streaming data. The ETVision IP address and port

number are specified in the command line. A data record, containing all data items

being reported by ETVision, is displayed as a line of values on the Command Prompt

window. This will repeat for successive data records until the <Esc> key is pressed.

Command: ETReceiveData IPAddress IPPort

where IPAddress and IPPort are the address and port number shown on the ETVision

Network configuration dialog

• ETReceiveImage

Demonstrate receiving image data from ETVision on a data channel

Be sure that one of the “Send Video” boxes is checked on the ETVision, Network

Configuration dialog, and click “Listen”. Both a command and a data socket

connection to ETVision are opened by the ETReceiveImage program, and the data

socket is used to receive image data. The ETVision IP address and port number as

well as a jpg file name are specified in the command line. A single jpg image is read

ETVISION NETWORK COMM MANUAL

 27

from ETVision and stored in the specified file. The command and data socket

connections are then closed.

Command: ETReceiveImage IPAddress IPPort ImageFileName

where IPAddress and IPPort are the address and port number shown on the ETVision

Network configuration dialog and ImageFileName is the name under which a jpg

image file will be stored.

• ETRecordData

Demonstrate control of ETVision data files

This sample program sends commands to ETVision to name and open data files, and

to start and stop recording data to the file. The ETVision IP address and port number

as well as a data file name are specified in the command line. An ETVision command

socket is opened. A command is sent to ETVision to open a file with the specified,

and then and a command is sent to begin recording. The ETVision Data File tab, on

the System Control Table window, should show that a file has been opened and is

recording. When the <Esc> key is pressed, on the PC running the ETRecordData

sample program, a command will be sent to ETVision to Stop recording, close the data

file, and close the command connection.

Command: ETRecordData IPAddress IPPort FileName

where IPAddress and IPPort are the address and port number shown on the ETVision

Network configuration dialog and IPPortFileName is the name of the data file to be

opened on ETVision.

• ETSetXDAT

Demonstrate setting XDAT values on ETVision

The ETVision IP address and port number as well as the desired XDAT value are

specified in the command line. An ETVision command socket is opened, and a

command is sent to set the specified XDAT value. The XDAT value should appear

on the ETVision Data Display Screen window.

Command: ETRecordData IPAddress IPPort XDAT

where IPAddress and IPPort are the address and port number shown on the ETVision

Network configuration dialog, and XDAT is an integer between 0 and 65535. The

command socket connection is then closed.

5.3 C#
The C# sample programs use the ETNetLib COM Object library and demonstrate receiving

realtime data, controlling ETVision data files, and sending XDAT values to ETVision.

ETNetLib must be “registered” on the PC running the sample C# programs. If ETRemote was

installed on the PC, this will have been done by the install program. Otherwise use the

regsvr32 command to register the dll.

These samples include simple GUIs rather than requiring use of the Command Prompt

window. Source code and Visual Studio project files are included for all samples. Be sure

that the external PC and ETVision PC are connected to the same LAN. In all cases, if a

ETVISION NETWORK COMM MANUAL

 28

command socket connection with ETVision is not already open, be sure to click “Listen” on

the Network configuration dialog before running the sample program. All sample programs

include a “readme” text file with instructions. The following sample programs are included.

• ETReceiveData

Demonstrate receiving data on a streaming data channel

Be sure that “Send Data Result” is checked on the ETVision Network

Configuration dialog. To run the program, double click ETReceiveData.exe in the

usual way. On the resulting program window, enter the ETVision IP address and

port number shown on the ETVision Network configuration dialog. Click the

“Connect” button to establish a connection to ETVision. The program will

attempt to open both a command and data socket connection to ETVision. If

successful, the Connect button will change to a “Disconnect” button. Click the

“Receive Data” button to display the most recent data frame being sent over the

data channel. Click again to display another frame. Examine the

ETReceiveDataForm.cs file code to see the calls to ETNetLib functions.

• ETReceiveImage

Demonstrate receiving Image data on a streaming data channel

Be sure that one of the Send Video boxes is checked on the ETVision, Network

Configuration dialog, and click “Listen”. On the PC running ETRecieveImage,

double click “ETReceiveImage.exe” in the usual way. On the resulting program

window, enter the ETVision IP address and port number shown on the ETVision

Network configuration dialog. Click the “Connect” button to establish a

connection to ETVision. The program will attempt to open both a command and

data socket connection to ETVision. If successful, the Connect button will change

to a “Disconnect” button. Click the “Receive Image” button to display the latest

video frame being sent over the data channel. Look at the

ETReceiveImageForm.cs file code to see the calls to ETNetLib functions.

• ETRecordData

Demonstrate control of ETVision data files using the ETVision command socket

channel

To run the program, double click ETReceiveImage.exe in the usual way. On the

resulting program window, enter the ETVision IP address and port number shown on

the ETVision Network Configuration dialog. Click the “Connect” button to establish a

command socket connection to ETVision. If successful, the Connect button will

change to a “Disconnect” button. Type in a file name to be used as the name of the

ETVision data file, then click “Set File Name”. The file name should appear as the

default name on the ETVision Data File dialog (Data File tab, on ETVision System

Control Table). Click the “Open Host File” button and the file should appear as

opened on the ETVision Data File dialog. Use the “Start Recording” and “Stop

Recording” buttons to cause recording to start and stop on ETVision. This should be

properly indicated on the ETVision Data File dialog. Examine the

ETRecordDataForm.cs file code to see the calls to ETNetLib functions.

ETVISION NETWORK COMM MANUAL

 29

• ETSetXDAT

Demonstrate setting ETVsion XDAT values using the ETVision command socket

channel

To run the program, double click ETSetXDAT.exe in the usual way. On the resulting

program window, enter the ETVision IP address and port number shown on the

ETVision Network configuration dialog. Click the “Connect” button to establish a

command socket connection to ETVision. If successful, the Connect button will

change to a “Disconnect” button. Type in the desired XDAT value and click the

“Set” button. The XDAT value should appear on the ETVision Data Display Screen.

Examine the ETSetXDATForm.cs file code to see the calls to ETNetLib functions.

5.4 C++/MFC
A set of 4 sample programs are provided using C++ and using the Micorsoft Foundation Class

(MFC) library to generate a GUI. These are identical in program name and functionality to

the C# samples, and also use the ETNetLib COM Object library.

5.5 Python
The Python examples are executed by typing commands on the “Command Prompt” window

(Win 10: Start->All programs->Windows System->Command Prompt). Results also display

on the Command Prompt window. Python code for each sample is provided as a “py” file.

Python is an interpretive language, so separate executables are not provided. If Python with its

associated libraries has been properly installed, the “py” files can be run from a command

prompt window.

Be sure that the external PC and ETVision PC are connected to the same LAN. In all cases, if

a command socket connection with ETVision is not already open, be sure to click “Listen” on

the ETVision Network configuration dialog before running the sample program. All sample

programs include a “readme” text file with instructions. The following sample programs are

included. Note that the Python samples do not require either the MFC library or the

ETNetLIb COM Object library

• ETReceiveData

Demonstrate receiving streaming data from ETVision on a data channel

Be sure that “Send Data Result” is checked on the ETVision Network Configuration

dialog. Both a command and a data socket connection to ETVision are opened, and

the data socket is used to receive streaming data. The ETVision IP address and port

number are specified in the command line. A data record, containing all data items

being reported by ETVision, is displayed as a line of values on the Command Prompt

window. This will repeat for successive data records until the <Esc> key is pressed.

Command: py ETReceiveData.py IPAddress IPPort

where IPAddress and IPPort are the address and port number shown on the ETVision

Network configuration dialog

• ETRecordData

Demonstrate control of ETVision data files

ETVISION NETWORK COMM MANUAL

 30

This sample program sends commands to ETVision to name and open data files, and

to start and stop recording data to the file. The ETVision IP address and port number

as well as a data file name are specified in the command line. An ETVision command

socket is opened. A command is sent to ETVision to open a file with the specified,

and then and a command is sent to begin recording. The ETVision Data File tab, on

the System Control Table window, should show that a file has been opened and is

recording. When the <Esc> key is pressed, on the PC running the ETRecordData.py

sample program, a command will be sent to ETVision to Stop recording, close the data

file, and close the command connection.

Command: py ETRecordData.py IPAddress IPPort FileName

where IPAddress and IPPort are the address and port number shown on the ETVision

Network configuration dialog and FileName is the name of the data file to be opened

on ETVision.

• ETSetXDAT

Demonstrate setting XDAT values on ETVision

The ETVision IP address and port number as well as the desired XDAT value are

specified in the command line. An ETVision command socket is opened, and a

command is sent to set the specified XDAT value. The XDAT value should appear

on the ETVision Data Display Screen window.

Command: py ETRecordData.py IPAddress IPPort XDAT

where IPAddress and IPPort are the address and port number shown on the ETVision

Network configuration dialog, and XDAT is an integer between 0 and 65535. The

command socket connection is then closed.

• ETReceiveImage

Demonstrate receiving Image data on a streaming data channel

This sample program opens a command socket and data socket to ETVision, sends

a command to ETVision to stream video, receives one video frame from the data

socket and records it as a jpg image to the specified file. Be sure that one of the

Send Video boxes is checked on the ETVision, Network Configuration dialog.

The ETVision IP address and port number (shown on the ETVision Network

configuration dialog) as well as the image file name are specified in the Python

command line. From a command prompt, go to the ETReceiveImage.py folder

and use the command line shown below.

• Command: py ETReceiveImage.py IPAddress IPPort ImageFileName

where IPAddress and IPPort are the address and port number shown on the

ETVision Network configuration dialog.

ETVISION NETWORK COMM MANUAL

 31

6 Communication with Paradigm

Paradigm with the Paradigm elements for ASL add-on package, from Perception Research

Sytems Inc., is an application designed to facilitate building precisely timed visual display

experiments and collecting subject responses. Experiments can be built with a drag and drop

designer. A simple script event allows insertion of Python script if needed. The Paradigm

elements for ASL add-on package provides drag and drop elements to communicate with an

Argus ETVision eye tracker, including control of data recording on an ETVision eyetracker,

and setting XDAT values on ETVision.

To design an experiment that will communicate with ETVision, first open a new experiment.

Under Devices, select the Device Manager, and highlight “Network Port”. Check the

“NetworkPort1” check box. Next to “IP Address”, enter the IP address shown on the

ETVision Network Configuration dialog. Click on the Experiment Bar to open the network

port. Select the “ASL” tab on the left pane of the Paradigm window, and drag the “Begin

Session” element to the “Commands” pane near the bottom right of the Paradigm window. A

small dialog window will appear with a drop down menu labeled “XDAT Port Type”. Select

“EyeTRAC7 port” from the drop down menu, and click “Done”.

 Follow instructions in the Paradigm documentation to design an experiment using drag and

drop events and other Paradigm features. For example, command ETVision to start recording

at any event by dragging the ASL tab “Start Recording” element to the Command pane. Set

an XDAT value during any event by dragging the ASL tab “Send Marker” element to the

Command pane and entering the desired XDAT value. See Paradigm documentation for

additional features and more detailed instructions.

ETVISION NETWORK COMM MANUAL

 32

7 Communication with E-Prime

E-Prime, from Psychology Software Tools, Inc., is an application for designing visual display

experiments. It includes a programming language called E-Basic as well as graphical drag

and drop features. E-Prime version 2.0 Professional supports network TCIP sockets and can

communicate with the ETVision eyetracker. Argus Science provides an E-Basic library script

with subroutines that can be called from E-Prime “in-line” script objects. The library routines

support control of ETVision data recording functions, sending “XDAT” values to ETVision,

and reading real-time gaze data from ETVision. Sample scripts are provided to demonstrate

control of ETVision data files, setting XDAT values, and reading real time gaze values. The

sample scripts have been tested with E-Prime 2.0 (SP2) (2.0.10.356).

The library script and samples are normally installed as part of the ETRemote installation. On

Win 10 PCs click Start->Argus Science->ET SDK Samples, or use windows explorer to

navigate to Program Files (86)\Argus Science \ETRemote\ET_SDK_Samples. A windows

explorer screen will show several folders including “Eprime”.

If ETRemote is being used to send stimulus screen image to the ETVision for display as a

“Stationary Scene Camera” image on the ETVision Scene Video Screen, E-Prime may

sometimes prevent ETRemote from grabbing a screen image. In this case the image can

always be made to display on ETVision by inserting a zero duration blank image just before

the image object in question. This is illustrated by one of the included sample scripts.

When starting a new experiment design on E-Studio, double click the “Experiment Object”

node on the “Structure” diagram to bring up the Properties dialog. Select the Devices tab. If

“Socket” is listed, be sure it is checked. If “Socket” is not listed as one of the devices, click

the “Add” button, highlight “Socket” and click OK. Double click “Socket” on the Properties,

Devices tab, to bring up the Socket Edit dialog.

On the socket edit dialog, set “Name” to “Socket”; set “Server:” to the IP address shown on

the ETVision Network Configuration dialog; and set “Port”, “Connection Type”, and “Byte

Ordering” as shown in the screen shot below.

ETVISION NETWORK COMM MANUAL

 33

Open “Argus_ETVision_Eprime_Library.txt” in Notepad, and use copy/paste to past the text

into the E-Studio User Script Window. The library subroutines can now be called from E-

Prime “In-line Objects”.

The library subroutines as well as the sample programs that use them are designed to be very

short and simple. A user with experience in E-Basic programming can customize these

routines to best suit their specific task.

Functionality of each “library” subroutine is described by comment lines included with the

code. The Subroutines are:

• ETV_OpenDataFile

• ETV_CloseDataFile

• ETV_StartDataFileRecording

• ETV_StopDataFileRecording

• SendXDATtoETV (XDAT As Long)

• ETV_GetRealTimeFloatData (DataID As Integer, Value As Single, status As Integer)

• ETV_GetRealTimeIntegerData (DataID As Integer, Value As Integer, status As Integer)

To run one of the sample scripts, select “Open” from the E-Studio File menu, browse to the

desired *.es2 file, and click Open. It will not be necessary to copy text from the

Argus_ETVision_Eprime_Library, since that will already be part of the sample script. It will,

however, be necessary to open the Socket Edit menu, and set “Server” to the ETVision IP

address, as previously described. Make sure other items on the Socket Edit dialog are also set

as previously shown. If a command channel is not already opened on ETVision, click the

“Listen” button on the ETVision Network Configuration dialog before running the script. The

following sample scripts are included:

ETVision_Sample_FileOpen_Rec_SendXDAT_FileClose.es2

The sample program will first set XDAT to 0 (call to “SendXDATtoETV”

subroutine), send a command to ETVision to open a file (call to

“ETV_OpenDataFile”), and will display a message explaining the demonstration and

prompting for <SpaceBar> to start. The opened data file should show as ready to

record on the ETVision Data File dialog.

When <SpaceBar> is pressed E-Prime will send a command to ETVision to Start

recording on the data file (call to “ETV_StartDataFileRecording”), and the ETVision

Data File dialog should show that the file is recording.

E-Prime will then sequentially display a set of 6 screens, each with a different

background color and a number in the center. Each time a new screen is displayed

XDAT will be set to the number shown on the screen. This should be visible on the

ETVision Data Display screen. Each screen will display for several seconds before

proceeding to the next display. After all 6 have been displayed, XDAT will be set

back to zero (“SendXDATtoETV”), the file will stop recording

(“ETV_StopDataFileRecording”), and will close (“ETV_CloseDataFile”).

ETVISION NETWORK COMM MANUAL

 34

ETVision_Sample_ReadRTData.es2

The sample program will first display an instruction screen. When <SpaceBar> is

pressed, E-Prime will loop though ETVision commands to send horizontal and vertical

gaze data over the command channel (“ETV_GetRealTimeFloatData” subroutine),

and to update the E-Prime display with these values.

ETVision_BasicRT.es2

If ETRemote is being used to send stimulus screen image to the ETVision for display

as a “Stationary Scene Camera” image on the ETVision Scene Video Screen, E-Prime

may sometimes prevent ETRemote from grabbing a screen image. In this case the

image will appear on the Stimulus PC screen, but will not show on the ETVision

Scene Video Screen. The image object can be made to appear by inserting a blank

text object with zero duration just before it.

E-Prime includes a sample reaction time experiment called BasicRT.es2.

ETVision_BasicRT.es2 is a modified version. It differs from the original only in that

there are three additional text objects labeled Blank1, Blank2, and Blank3, each with

zero duration. If Blank1 is removed, the Instruction screen is not captured by

ETRemote, and does not display on the ETVision Scene Video Screen. If Blank2 is

removed some of the TrialProc text objects will not display on the ETVision Scene

Video Screen, and if Blank3 is removed the Goodbye text does not display on the

ETVision Scene Video Screen. With the “blanks” included, all images that display on

the Stimulus screen also appear on the ETVision Scene Video Screen.

ETVISION NETWORK COMM MANUAL

 35

8 Communication with MATLAB

MATLAB, from The Mathworks, Inc., when also equipped with the “Instrument Control

Toolbox”, can open TCP sockets, and can communicate with Argus ETVision systems. Call

the tcpip function, with a device IP address and port number as arguments, to create a tcpip

object. The ETVision IP address and port number can be found on the ETVision Network

Configuration dialog. For example, create the tcp object t with IP address 192.168.1.35 and

port 51000, as follows:

 t = tcpip_pc (‘192.168.1.35’, 51000)

Use fopen to connect. For example:

 fopnen(t)

Remember to close the connection and delete the tcpip object at the end of the program. For

example:

 fclose(t)

 delete(t)

A set of function subroutines is provided to send various commands to ETVision. Each is in a

separate file, with a file name that is the same as the function, and “.m” extension. Each

assumes that a tcpip object has already been created and connected with ETVision as the

ETVision command socket. The tcpip object is the first argument in each function. There are

separate functions to send commands for ETVision file open, file close, start and stop

recording, set XDAT, and to command ETVision to send the latest value of a data item over

the command socket. The latter two functions require a second argument, to specify the

desired XDAT value in the first case, and to specify the DataID of the desired data item, in the

second case. XDAT must be an integer between 0 and 65535. DataID must be an integer

corresponding to one of the data ID values listed in section three, under command 25. The

functions are:

• ETVision_OpenDataFile(t)

• ETVision_CloseDataFile(t)

• ETVision_StartDataFileRecording(t)

• ETVision_StopDataFileRecording(t)

• ETVision_SendXDAT(t, XDAT)

• ETVision_GetDataItem(t, DataID)

3 sample Matlab scripts are provided, which call the functions discussed above, so the files

containing these functions must be in the current Matlab directory or a directory on the Matlab

path. Each sample starts by creating a tcp object and connecting to ETVision, as discussed

above. The Matlab PC and ETVision PC must be connected to the same local area network.

When running the sample, the user must first edit the line of code that sets the proper IP

address, since this may be different for each system installation.

ETVISION NETWORK COMM MANUAL

 36

ETVision_Sample_SendXDAT.m

The sample program creates a TCP object, opens a command socket connection with

ETVision, pauses for 1 sec, sets XDAT to 500 on ETVision by calling the

ETVision_SendXDAT function, pauses for another seconds, and then closes the connection

and deletes the TCP object. The user must edit the script to include the correct IP address for

ETVision (as shown on the ETVision Network Configuration dialog), and to change the

XDAT value. Be sure that the “Listen” button has been clicked, on the ETVision Network

configuration dialog, before running the script. The XDAT values set by the sample

ETVision_Sample_File_and_XDAT_Commands.m

The sample program creates a TCP object, opens a command socket connection with

ETVision, pauses for 1 sec, then sends a command to open a data file on ETVision, a

command to set XDAT=0, and a command to start recording on the opened file. At 5 sec

intervals, commands are sent to set XDAT to 100, 150, and 200. After another 5 sec interval,

commands are sent to close the connection and delete the TCP object.

ETVision_Sample_Read_RealTime_Data.m

The sample program creates a TCP object, opens a command socket connection with

ETVision, and pauses for 1 sec. The program then clears the input buffer, and sends a

command to ETVision to send the latest horizontal gaze position value over the command

channel. It then reads the first 40 bytes of the response into an input buffer, and reads a float

value starting at the 41st byte into a horizontal gaze position variable. The command and read

sequence is repeated for vertical gaze and pupil diameter values. Finally the input buffer is

cleared and commands are sent to close the connection and delete the TCP object. Note that

the sample program does not check the ETVision response to see if the Argus signature is

correct, to see if the data ID on the return value is correct, or to see if the checksum on the

return value is correct. This type of error checking can be included if desired. As with the

other sample scripts, be sure that the “Listen” button has been clicked, on the ETVision

Network configuration dialog, before running the script.

ETVsion_Sample_Read_AI_Objects_Data.m

The sample program creates a TCP object, opens a command socket connection with

ETVision, and pauses for 1 sec. The program then clears the input buffer, and sends a

command to ETVision to send the latest set of AI_Objects data over the command channel. It

then reads the first 40 bytes of the response into an input buffer, and reads an integer value

starting at the 41st byte into a variable specifying no_of_AI_Objects detected. For each AI

Object detected it reads the list of 7 data items that specify the object ID, object location, and

location (if any) of point of gaze within the object bounding box. Finally the input buffer is

cleared and commands are sent to close the connection and delete the TCP object. Note that

the sample program does not check the ETVision response to see if the Argus signature is

correct, to see if the data ID on the return value is correct, or to see if the checksum on the

return value is correct. This type of error checking can be included if desired. As with the

other sample scripts, be sure that the “Listen” button has been clicked, on the ETVision

Network configuration dialog, before running the script.

ETVISION NETWORK COMM MANUAL

 37

9 Communication using Lab Streaming Layer

“Lab Streaming Layer" (LSL) is an open source protocol that allows researchers to receive

and synchronize streaming data from multiple devices.

Sample Code description

Argus Science provides sample CPP source code, for a program called ETRelayData, to

illustrate a procedure for receiving an ETVision data stream via LAN and streaming the same

data to LAN with an LSL compatible protocol. Since LSL protocol requires that there be a

known number of data streams, the sample code assumes that the data stream made available

to LSL contains the default data item set output from ETVision when not using the ET3Space

feature. Users can use the sample code as is, can modify the code to change the set of data

items made available to LSL, or may just create and embed equivalent code in their own

applications.

Sample CPP code, for a program called ETReceiveData, is also provided to illustrate a

procedure for receiving the LSL compatible data stream output by ETRelayData. Users will

usually want to use the ETReceiveData code as an example to help them embed equivalent

code in their own application, since the ETReceiveData sample illustrates how to receive the

data stream but does not do anything with it.

In both cases (ETRelayData and ETReceiveData) CPP source code and a Visual Studio 2022

project file are provided. An executable is not included since it is assumed that users will

want to customize the data set for their applications. Users can use the provided project file

with Windows 10 or Windows 11, and Visual Studio 2022; or can write comparable code with

whatever development environment is being used.

If ETVision is not set to the “non-ET3Space” default data set, any data items in the default set

not actually being streamed by ETVision will still be included in the LSL compatible output

stream produced by ETRelay Data, but will always have values of zero. Any data items

output by ETVision that are not part of the default set will simply not appear in the LSL

compatible output stream. The default data item set includes the following items:

 "Frame Number",

 "Update Rate",

 "overtime_count",

 "mark_value",

 "XDAT",

 "left_pupil_pos_horz",

 "right_pupil_pos_horz",

 "left_pupil_pos_vert",

 "right_pupil_pos_vert",

 "left_pupil_diam",

 "right_pupil_diam",

 "left_cr_pos_horz",

 "right_cr_pos_horz",

 "left_cr_pos_vert",

 "right_cr_pos_vert",

ETVISION NETWORK COMM MANUAL

 38

 "left_cr2_pos_horz",

 "right_cr2_pos_horz",

 "left_cr2_pos_vert",

 "right_cr2_pos_vert",

 "horz_gaze_coord",

 "vert_gaze_coord",

 "vergence_angle",

 "verg_gaze_coord_x",

 "verg_gaze_coord_y",

 "verg_gaze_coord_z"

Explanations for these items can be found in section 4 of this document, as well as in the

ETVision manual.

Modifying the ETRelayData code for different data sets

The provided sample code can be easily modified to relay a different data set. For

example, to delete the last three items (“verg_gaze_coord_x”, verg_gaze_coord_y” and

“verg_gaze_cord_z”) from the data set, modify the code as follows.

1. On “ETRelayData.h”, reduce the NUM_ARGUS_LSL_CHANNELS by 3. In other words,

change “#define NUM_ARGUS_LSL_CHANNELS 25” to “#define

NUM_ARGUS_LSL_CHANNELS 22”.

2. On “ETRelayData.cpp” delete the last three items listed under the comment “LSL

Streaming Channels”. The list will now be:
const char *channels[] = {

 "Frame Number",

 "Update Rate",

 "overtime_count",

 "mark_value",

 "XDAT",

 "left_pupil_pos_horz",

 "right_pupil_pos_horz",

 "left_pupil_pos_vert",

 "right_pupil_pos_vert",

 "left_pupil_diam",

 "right_pupil_diam",

 "left_cr_pos_horz",

 "right_cr_pos_horz",

 "left_cr_pos_vert",

 "right_cr_pos_vert",

 "left_cr2_pos_horz",

 "right_cr2_pos_horz",

 "left_cr2_pos_vert",

 "right_cr2_pos_vert",

 "horz_gaze_coord",

 "vert_gaze_coord",

 "vergence_angle"

};

ETVISION NETWORK COMM MANUAL

 39

 3. On “ETRelayData.cpp”, find subroutine ProcMsgDataV0, and find the comment
// Get "verg_gaze_coord_x"

Delete the lines under this comment (directly after the "FlagDsp = " statement) that put a

value in the Sample buffer. In other words delete the following lines:
 if (FlagDsp)

 pSample[SIndex++] = (float)ValDouble;

 else

 pSample[SIndex++] = 0;

Repeat this under the // Get "verg_gaze_coord_y" and // Get

"verg_gaze_coord_z" comment lines.

To add an item to the data set, increment the NUM_ARGUS_LSL_CHANNELS,on the

ETRelayData.h file, to the appropriate number. Add the desired item to the list at the

beginning of ETRelayData.cpp. Find the comment in the ProcMsgDataV0 subroutine to

“Get” the desired data item. Below the “FlagDsp = ” statement, add the code to put a

value in the Sample buffer.

Be sure items in the “LSL Streaming Channels list always appear in the same order as on the

ETVision, Data Selection dialog list (and the “// Get ” items in the ProcMsgDataV0

subroutine). When adding a value to the Sample buffer be sure to use the correct data type

(“(float)ValDouble”, or “(float)ValUInt”).

